Distance $k$-domination in some cycle related graphs
نویسندگان
چکیده
منابع مشابه
total $k$-distance domination critical graphs
a set $s$ of vertices in a graph $g=(v,e)$ is called a total$k$-distance dominating set if every vertex in $v$ is withindistance $k$ of a vertex in $s$. a graph $g$ is total $k$-distancedomination-critical if $gamma_{t}^{k} (g - x) < gamma_{t}^{k}(g)$ for any vertex $xin v(g)$. in this paper,we investigate some results on total $k$-distance domination-critical of graphs.
متن کاملTOTAL k-DISTANCE DOMINATION CRITICAL GRAPHS
A set S of vertices in a graph G = (V,E) is called a total k-distance dominating set if every vertex in V is within distance k of a vertex in S. A graph G is total k-distance domination-critical if γ t (G − x) < γ t (G) for any vertex x ∈ V (G). In this paper, we investigate some results on total k-distance domination-critical of graphs.
متن کاملTotal $k$-Rainbow domination numbers in graphs
Let $kgeq 1$ be an integer, and let $G$ be a graph. A {it$k$-rainbow dominating function} (or a {it $k$-RDF}) of $G$ is afunction $f$ from the vertex set $V(G)$ to the family of all subsetsof ${1,2,ldots ,k}$ such that for every $vin V(G)$ with$f(v)=emptyset $, the condition $bigcup_{uinN_{G}(v)}f(u)={1,2,ldots,k}$ is fulfilled, where $N_{G}(v)$ isthe open neighborhood of $v$. The {it weight} o...
متن کاملWeak signed Roman k-domination in graphs
Let $kge 1$ be an integer, and let $G$ be a finite and simple graph with vertex set $V(G)$.A weak signed Roman $k$-dominating function (WSRkDF) on a graph $G$ is a function$f:V(G)rightarrow{-1,1,2}$ satisfying the conditions that $sum_{xin N[v]}f(x)ge k$ for eachvertex $vin V(G)$, where $N[v]$ is the closed neighborhood of $v$. The weight of a WSRkDF $f$ is$w(f)=sum_{vin V(G)}f(v)$. The weak si...
متن کاملRoman k-Tuple Domination in Graphs
For any integer $kgeq 1$ and any graph $G=(V,E)$ with minimum degree at least $k-1$, we define a function $f:Vrightarrow {0,1,2}$ as a Roman $k$-tuple dominating function on $G$ if for any vertex $v$ with $f(v)=0$ there exist at least $k$ and for any vertex $v$ with $f(v)neq 0$ at least $k-1$ vertices in its neighborhood with $f(w)=2$. The minimum weight of a Roman $k$-tuple dominatin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Miskolc Mathematical Notes
سال: 2018
ISSN: 1787-2405,1787-2413
DOI: 10.18514/mmn.2018.1163